Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 7(5): e0022322, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069437

RESUMO

Electromicrobiology can be used to understand extracellular electron uptake in previously undescribed chemolithotrophs. Enrichment and characterization of the uncultivated electroautotroph "Candidatus Tenderia electrophaga" using electromicrobiology led to the designation of the order Tenderiales. Representative Tenderiales metagenome-assembled genomes (MAGs) have been identified in a number of environmental surveys, yet a comprehensive characterization of conserved genes for extracellular electron uptake has thus far not been conducted. Using comparative genomics, we identified conserved orthologous genes within the Tenderiales and nearest-neighbor orders important for extracellular electron uptake based on a previously proposed pathway from "Ca. Tenderia electrophaga." The Tenderiales contained a conserved cluster we designated uetABCDEFGHIJ, which encodes proteins containing features that would enable transport of extracellular electrons to cytoplasmic membrane-bound energy-transducing complexes such as two conserved cytochrome cbb3 oxidases. For example, UetJ is predicted to be an extracellular undecaheme c-type cytochrome that forms a heme wire. We also identified clusters of genes predicted to facilitate assembly and maturation of electron transport proteins, as well as cellular attachment to surfaces. Autotrophy among the Tenderiales is supported by the presence of carbon fixation and stress response pathways that could allow cellular growth by extracellular electron uptake. Key differences between the Tenderiales and other known neutrophilic iron oxidizers were revealed, including very few Cyc2 genes in the Tenderiales. Our results reveal a possible conserved pathway for extracellular electron uptake and suggest that the Tenderiales have an ecological role in coupling metal or mineral redox chemistry and the carbon cycle in marine and brackish sediments. IMPORTANCE Chemolithotrophic bacteria capable of extracellular electron uptake to drive energy metabolism and CO2 fixation are known as electroautotrophs. The recently described order Tenderiales contains the uncultivated electroautotroph "Ca. Tenderia electrophaga." The "Ca. Tenderia electrophaga" genome contains genes proposed to make up a previously undescribed extracellular electron uptake pathway. Here, we use comparative genomics to show that this pathway is well conserved among Tenderiales spp. recovered by metagenome-assembled genomes. This conservation extends to near neighbors of the Tenderiales but not to other well-studied chemolithotrophs, including iron and sulfur oxidizers, indicating that these genes may be useful markers of growth using insoluble extracellular electron donors. Our findings suggest that extracellular electron uptake and electroautotrophy may be pervasive among the Tenderiales, and the geographic locations from which metagenome-assembled genomes were recovered offer clues to their natural ecological niche.


Assuntos
Dióxido de Carbono , Chromatiaceae , Dióxido de Carbono/metabolismo , Enxofre , Ferro/metabolismo , Citocromos , Oxirredutases , Heme
2.
ISME Commun ; 2(1): 56, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938693

RESUMO

Bivalves from the family Lucinidae host sulfur-oxidizing bacterial symbionts, which are housed inside specialized gill epithelial cells and are assumed to be acquired from the environment. However, little is known about the Lucinidae life cycle and symbiont acquisition in the wild. Some lucinid species broadcast their gametes into the surrounding water column, however, a few have been found to externally brood their offspring by the forming gelatinous egg masses. So far, symbiont transmission has only been investigated in one species that reproduces via broadcast spawning. Here, we show that the lucinid Loripes orbiculatus from the West African coast forms egg masses and these are dominated by diverse members of the Alphaproteobacteria, Clostridia, and Gammaproteobacteria. The microbial communities of the egg masses were distinct from those in the environments surrounding lucinids, indicating that larvae may shape their associated microbiomes. The gill symbiont of the adults was undetectable in the developmental stages, supporting horizontal transmission of the symbiont with environmental symbiont acquisition after hatching from the egg masses. These results demonstrate that L. orbiculatus acquires symbionts from the environment independent of the host's reproductive strategy (brooding or broadcast spawning) and reveal previously unknown associations with microbes during lucinid early development.

3.
Appl Environ Microbiol ; 88(2): e0208321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788061

RESUMO

Molecular surveys of low temperature deep-sea hydrothermal vent fluids have shown that Campylobacteria (previously Epsilonproteobacteria) often dominate the microbial community and that three genera, Arcobacter, Sulfurimonas, and Sulfurovum, frequently coexist. In this study, we used replicated radiocarbon incubations of deep-sea hydrothermal fluids to investigate activity of each genus under three experimental conditions. To quantify genus-specific radiocarbon incorporation, we used newly designed oligonucleotide probes for Arcobacter, Sulfurimonas, and Sulfurovum to quantify their activity using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) combined with fluorescence-activated cell sorting. All three genera actively fixed CO2 in short-term (∼ 20 h) incubations, but responded differently to the additions of nitrate and oxygen. Oxygen additions had the largest effect on community composition, and caused a pronounced shift in community composition at the amplicon sequence variant (ASV) level after only 20 h of incubation. The effect of oxygen on carbon fixation rates appeared to depend on the initial starting community. The presented results support the hypothesis that these chemoautotrophic genera possess functionally redundant core metabolic capabilities, but also reveal finer-scale differences in growth likely reflecting adaptation of physiologically-distinct phylotypes to varying oxygen concentrations in situ. Overall, our study provides new insights into how oxygen controls community composition and total chemoautotrophic activity, and underscores how quickly deep-sea vent microbial communities respond to disturbances. IMPORTANCE Sulfidic environments worldwide are often dominated by sulfur-oxidizing, carbon-fixing Campylobacteria. Environmental factors associated with this group's dominance are now understood, but far less is known about the ecology and physiology of members of subgroups of chemoautotrophic Campylobacteria. In this study, we used a novel method to differentiate the genus-specific chemoautotrophic activity of three subtypes of Campylobacteria. In combination with evidence from microscopic counts, chemical consumption/production during incubations, and DNA-based measurements, our data show that oxygen concentration affects both community composition and chemoautotrophic function in situ. These results help us better understand factors controlling microbial diversity at deep-sea hydrothermal vents, and provide first-order insights into the ecophysiological differences between these distinct microbial taxa.


Assuntos
Fontes Hidrotermais , Ciclo do Carbono , Fontes Hidrotermais/microbiologia , Hibridização in Situ Fluorescente , Oxigênio , Filogenia , RNA Ribossômico 16S , Água do Mar/microbiologia
4.
Environ Microbiol ; 21(10): 3896-3908, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299137

RESUMO

Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.


Assuntos
Chlorobium/metabolismo , Chromatiaceae/metabolismo , Lagos/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Ciclo do Carbono , Chlorobium/isolamento & purificação , Chromatiaceae/isolamento & purificação , Croácia , Fotossíntese , Água do Mar/microbiologia
5.
Environ Microbiol ; 21(1): 244-258, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362214

RESUMO

Chemoautotrophic bacteria belonging to the genus Sulfurimonas (class Campylobacteria) were previously identified as key players in the turnover of zero-valence sulfur, a central intermediate in the marine sulfur cycle. S. denitrificans was further shown to be able to oxidize cyclooctasulfur (S8 ). However, at present the mechanism of activation and metabolism of cyclooctasulfur is not known. Here, we assessed the transcriptome and proteome of S. denitrificans grown with either thiosulfate or S8 as the electron donor. While the overall expression profiles under the two growth conditions were rather similar, distinct differences were observed that could be attributed to the utilization of S8 . This included a higher abundance of expressed genes related to surface attachment in the presence of S8 , and the differential regulation of the sulfur-oxidation multienzyme complex (SOX), which in S. denitrificans is encoded in two gene clusters: soxABXY 1 Z 1 and soxCDY 2 Z 2 . While the proteins of both clusters were present with thiosulfate, only proteins of the soxCDY 2 Z 2 were detected at significant levels with S8 . Based on these findings a model for the oxidation of S8 is proposed. Our results have implications for interpreting metatranscriptomic and -proteomic data and for the observed high level of diversification of soxY 2 Z 2 among sulfur-oxidizing Campylobacteria.


Assuntos
Helicobacteraceae/genética , Helicobacteraceae/metabolismo , Proteoma , Enxofre/metabolismo , Tiossulfatos/metabolismo , Transcriptoma , Crescimento Quimioautotrófico , Regulação Bacteriana da Expressão Gênica , Oxirredução , Proteômica
6.
Environ Microbiol ; 20(12): 4486-4502, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117262

RESUMO

Coastal oceans receive large amounts of anthropogenic fixed nitrogen (N), most of which is denitrified in the sediment before reaching the open ocean. Sandy sediments, which are common in coastal regions, seem to play an important role in catalysing this N-loss. Permeable sediments are characterized by advective porewater transport, which supplies high fluxes of organic matter into the sediment, but also leads to fluctuations in oxygen and nitrate concentrations. Little is known about how the denitrifying communities in these sediments are adapted to such fluctuations. Our combined results indicate that denitrification in eutrophied sandy sediments from the world's largest tidal flat system, the Wadden Sea, is carried out by different groups of microorganisms. This segregation leads to the formation of N2 O which is advectively transported to the overlying waters and thereby emitted to the atmosphere. At the same time, the production of N2 O within the sediment supports a subset of Flavobacteriia which appear to be specialized on N2 O reduction. If the mechanisms shown here are active in other coastal zones, then denitrification in eutrophied sandy sediments may substantially contribute to current marine N2 O emissions.


Assuntos
Desnitrificação , Sedimentos Geológicos/microbiologia , Óxido Nitroso/metabolismo , Microbiologia do Solo , Atmosfera , Sedimentos Geológicos/química , Nitratos/metabolismo , Fixação de Nitrogênio , Oceanos e Mares
7.
Nat Microbiol ; 3(8): 961, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29950696

RESUMO

In this Article, the completeness and number of contigs for draft genomes from two individuals of Laxus oneistus are incorrect in the main text, although the correct information is included in Table 1. The original and corrected versions of the relevant sentence are shown in the correction notice.

8.
Environ Microbiol ; 20(2): 450-461, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28772023

RESUMO

Molecular hydrogen (H2 ) is the key intermediate in the anaerobic degradation of organic matter. Its removal by H2 -oxidizing microorganisms is essential to keep anaerobic degradation energetically favourable. Sulfate-reducing microorganisms (SRM) are known as the main H2 scavengers in anoxic marine sediments. Although the community of marine SRM has been extensively studied, those consuming H2 in situ are completely unknown. We combined metagenomics, PCR-based clone libraries, single-amplified genomes (SAGs) and metatranscriptomics to identify potentially H2 -consuming SRM in anoxic coastal sediments. The vast majority of SRM-related H2 ase sequences were assigned to group 1b and 1c [NiFe]-H2 ases of the deltaproteobacterial order Desulfobacterales. Surprisingly, the same sequence types were similarly highly expressed in spring and summer, suggesting that these are stable and integral members of the H2 -consuming community. Notably, one sequence cluster from the SRM group 1 consistently accounted for around half of all [NiFe]-H2 ase transcripts. Using SAGs, we could link this cluster with the 16S rRNA genes of the uncultured Sva0081-group of the family Desulfobacteraceae. Sequencing of 16S rRNA gene amplicons and H2 ase gene libraries suggested consistently high in situ abundance of the Sva0081 group also in other marine sediments. Together with other Desulfobacterales these likely are important H2 -scavengers in marine sediments.


Assuntos
Deltaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Metagenômica , Oxirredução , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
9.
Front Microbiol ; 9: 3124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619197

RESUMO

Acetate is a key intermediate in anaerobic mineralization of organic matter in marine sediments. Its turnover is central to carbon cycling, however, the relative contribution of different microbial populations to acetate assimilation in marine sediments is unknown. To quantify acetate assimilation by in situ abundant bacterial populations, we incubated coastal marine sediments with 14C-labeled acetate and flow-sorted cells that had been labeled and identified by fluorescence in situ hybridization. Subsequently, scintillography determined the amount of 14C-acetate assimilated by distinct populations. This approach fostered a high-throughput quantification of acetate assimilation by phylogenetically identified populations. Acetate uptake was highest in the oxic-suboxic surface layer for all sorted bacterial populations, including deltaproteobacterial sulfate-reducing bacteria (SRB), which accounted for up to 32% of total bacterial acetate assimilation. We show that the family Desulfobulbaceae also assimilates acetate in marine sediments, while the more abundant Desulfobacteraceae dominated acetate assimilation despite lower uptake rates. Unexpectedly, members of Gammaproteobacteria accounted for the highest relative acetate assimilation in all sediment layers with up to 31-62% of total bacterial acetate uptake. We also show that acetate is used to build up storage compounds such as polyalkanoates. Together, our findings demonstrate that not only the usual suspects SRB but a diverse bacterial community may substantially contribute to acetate assimilation in marine sediments. This study highlights the importance of quantitative approaches to reveal the roles of distinct microbial populations in acetate turnover.

10.
ISME J ; 11(10): 2334-2344, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28644443

RESUMO

Chlamydiae are obligate intracellular bacteria comprising important human pathogens and symbionts of protists. Molecular evidence indicates a tremendous diversity of chlamydiae particularly in marine environments, yet our current knowledge is based mainly on terrestrial representatives. Here we provide first insights into the biology of marine chlamydiae representing three divergent clades. Our analysis of single-cell amplified genomes revealed hallmarks of the chlamydial lifestyle, supporting the ancient origin of their characteristic developmental cycle and major virulence mechanisms. Surprisingly, these chlamydial genomes encode a complete flagellar apparatus, a previously unreported feature. We show that flagella are an ancient trait that was subject to differential gene loss among extant chlamydiae. Together with a chemotaxis system, these marine chlamydiae are likely motile, with flagella potentially playing a role during host cell infection. This study broadens our view on chlamydial biology and indicates a largely underestimated potential to adapt to different hosts and environments.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia/citologia , Chlamydia/genética , Genoma Bacteriano , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia/classificação , Chlamydia/patogenicidade , Flagelos/genética , Flagelos/metabolismo , Genômica , Humanos , Virulência
11.
Environ Microbiol Rep ; 9(4): 323-344, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28419734

RESUMO

Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Enxofre/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Sedimentos Geológicos/química , Filogenia , Água do Mar/análise , Água do Mar/microbiologia , Enxofre/análise
12.
ISME J ; 11(5): 1276-1281, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28060363

RESUMO

To date, very little is known about the bacterial core community of marine sediments. Here we study the environmental distribution, abundance and ecogenomics of the gammaproteobacterial Woeseiaceae/JTB255 marine benthic group. A meta-analysis of published work shows that the Woeseiaceae/JTB255 are ubiquitous and consistently rank among the most abundant 16S rRNA gene sequences in diverse marine sediments. They account for up to 22% of bacterial amplicons and 6% of total cell counts in European and Australian coastal sediments. The analysis of a single-cell genome, metagenomic bins and the genome of the next cultured relative Woeseia oceani indicated a broad physiological range, including heterotrophy and facultative autotrophy. All tested (meta)genomes encode a truncated denitrification pathway to nitrous oxide. The broad range of energy-yielding metabolisms possibly explains the ubiquity and high abundance of Woeseiaceae/JTB255 in marine sediments, where they carry out diverse, but yet unknown ecological functions.


Assuntos
Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Austrália , Processos Autotróficos , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Genoma Bacteriano , Processos Heterotróficos , Metagenômica , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética
13.
Nat Microbiol ; 2: 16195, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27775707

RESUMO

Chemosynthetic symbioses are partnerships between invertebrate animals and chemosynthetic bacteria. The latter are the primary producers, providing most of the organic carbon needed for the animal host's nutrition. We sequenced genomes of the chemosynthetic symbionts from the lucinid bivalve Loripes lucinalis and the stilbonematid nematode Laxus oneistus. The symbionts of both host species encoded nitrogen fixation genes. This is remarkable as no marine chemosynthetic symbiont was previously known to be capable of nitrogen fixation. We detected nitrogenase expression by the symbionts of lucinid clams at the transcriptomic and proteomic level. Mean stable nitrogen isotope values of Loripes lucinalis were within the range expected for fixed atmospheric nitrogen, further suggesting active nitrogen fixation by the symbionts. The ability to fix nitrogen may be widespread among chemosynthetic symbioses in oligotrophic habitats, where nitrogen availability often limits primary productivity.


Assuntos
Organismos Aquáticos/microbiologia , Bactérias/enzimologia , Bivalves/microbiologia , Cromadoria/microbiologia , Fixação de Nitrogênio , Simbiose , Animais , Bactérias/genética , Perfilação da Expressão Gênica , Nitrogenase/genética , Proteoma/análise , Análise de Sequência de DNA
14.
Front Microbiol ; 7: 964, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446006

RESUMO

Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 µm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming "Candidatus Thiomargarita nelsonii Thio36", and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. "Ca. T. nelsonii Thio36" is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that "Ca. T. nelsonii Thio36" can function as a chemolithoautotroph. Carbon can be fixed via the Calvin-Benson-Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, "Ca. T. nelsonii Thio36" also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na(+)-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae "Ca. T. nelsonii Thio36" encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of "Ca. T. nelsonii Thio36" provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.

15.
Front Microbiol ; 7: 603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199933

RESUMO

The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.

16.
ISME J ; 10(8): 1939-53, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26872043

RESUMO

Marine sediments are the largest carbon sink on earth. Nearly half of dark carbon fixation in the oceans occurs in coastal sediments, but the microorganisms responsible are largely unknown. By integrating the 16S rRNA approach, single-cell genomics, metagenomics and transcriptomics with (14)C-carbon assimilation experiments, we show that uncultured Gammaproteobacteria account for 70-86% of dark carbon fixation in coastal sediments. First, we surveyed the bacterial 16S rRNA gene diversity of 13 tidal and sublittoral sediments across Europe and Australia to identify ubiquitous core groups of Gammaproteobacteria mainly affiliating with sulfur-oxidizing bacteria. These also accounted for a substantial fraction of the microbial community in anoxic, 490-cm-deep subsurface sediments. We then quantified dark carbon fixation by scintillography of specific microbial populations extracted and flow-sorted from sediments that were short-term incubated with (14)C-bicarbonate. We identified three distinct gammaproteobacterial clades covering diversity ranges on family to order level (the Acidiferrobacter, JTB255 and SSr clades) that made up >50% of dark carbon fixation in a tidal sediment. Consistent with these activity measurements, environmental transcripts of sulfur oxidation and carbon fixation genes mainly affiliated with those of sulfur-oxidizing Gammaproteobacteria. The co-localization of key genes of sulfur and hydrogen oxidation pathways and their expression in genomes of uncultured Gammaproteobacteria illustrates an unknown metabolic plasticity for sulfur oxidizers in marine sediments. Given their global distribution and high abundance, we propose that a stable assemblage of metabolically flexible Gammaproteobacteria drives important parts of marine carbon and sulfur cycles.


Assuntos
Ciclo do Carbono , Carbono/metabolismo , Gammaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Enxofre/metabolismo , Austrália , Europa (Continente) , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Perfilação da Expressão Gênica , Geografia , Metagenômica , Oceanos e Mares , Oxirredução , Análise de Sequência de DNA
17.
FEMS Microbiol Ecol ; 90(3): 731-46, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25244359

RESUMO

Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents.


Assuntos
Acetatos/metabolismo , Epsilonproteobacteria/metabolismo , Gammaproteobacteria/metabolismo , Fontes Hidrotermais/microbiologia , Consórcios Microbianos/genética , Organismos Aquáticos/genética , Sequência de Bases , Epsilonproteobacteria/classificação , Epsilonproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Processos Heterotróficos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA
18.
Environ Microbiol ; 16(11): 3416-30, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24467476

RESUMO

Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.


Assuntos
Deltaproteobacteria/metabolismo , Ecossistema , Epsilonproteobacteria/metabolismo , Água do Mar/microbiologia , Enxofre/metabolismo , Biofilmes , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Epsilonproteobacteria/genética , Epsilonproteobacteria/isolamento & purificação , Sedimentos Geológicos/química , Fontes Hidrotermais , RNA Ribossômico 16S/genética , Sulfatos/metabolismo , Enxofre/análise
19.
Environ Microbiol ; 16(6): 1612-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24286252

RESUMO

Hydrothermal sediments in the Guaymas Basin are covered by microbial mats that are dominated by nitrate-respiring and sulphide-oxidizing Beggiatoa. The presence of these mats strongly correlates with sulphide- and ammonium-rich fluids venting from the subsurface. Because ammonium and oxygen form opposed gradients at the sediment surface, we hypothesized that nitrification is an active process in these Beggiatoa mats. Using biogeochemical and molecular methods, we measured nitrification and determined the diversity and abundance of nitrifiers. Nitrification rates ranged from 74 to 605 µmol N l(-1) mat day(-1), which exceeded those previously measured in hydrothermal plumes and other deep-sea habitats. Diversity and abundance analyses of archaeal and bacterial ammonia monooxygenase subunit A genes, archaeal 16S ribosomal RNA pyrotags and fluorescence in situ hybridization confirmed that ammonia- and nitrite-oxidizing microorganisms were associated with Beggiatoa mats. Intriguingly, we observed cells of bacterial and potential thaumarchaeotal ammonia oxidizers attached to narrow, Beggiatoa-like filaments. Such a close spatial coupling of nitrification and nitrate respiration in mats of large sulphur bacteria is novel and may facilitate mat-internal cycling of nitrogen, thereby reducing loss of bioavailable nitrogen in deep-sea sediments.


Assuntos
Archaea/genética , Beggiatoa/fisiologia , Biofilmes , Sedimentos Geológicos/microbiologia , Nitrificação , Compostos de Amônio/química , Archaea/enzimologia , Proteínas Arqueais/genética , Oceano Atlântico , Bactérias/genética , Proteínas de Bactérias/genética , Dosagem de Genes , Genes Arqueais , Genes Bacterianos , Variação Genética , Sedimentos Geológicos/química , Fontes Hidrotermais/microbiologia , Fenômenos Microbiológicos , Dados de Sequência Molecular , Nitratos/química , Óxido Nítrico/química , Oxirredução , Oxirredutases/genética , Oxigênio/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Stand Genomic Sci ; 8(1): 58-68, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23961312

RESUMO

Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the disproportionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO2 as the sole carbon source. The genome of D. sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein-coding genes of which 78% have a predicted function based on auto-annotation. The chromosome furthermore encodes 46 tRNA genes and 3 rRNA operons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...